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Abstract In mammals, white adipose tissue (WAT) store

energy, whereas brown adipose tissue (BAT) burns energy.

As a thermogenic organ, BAT can help maintain body

temperature during cold exposure. Owing to its important

roles in energy metabolism and regulating triacylglycerol

levels, BAT has received great attention in treating obesity

and its related diseases. Recent studies have suggested that

BAT may secrete factor(s)—batokines—to regulate whole-

body energy metabolism. In this review, we summarize the

recent advances in the formation and function of BAT, as

well as molecules that regulate the activity of BAT and

beige fat.
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1 Introduction

The obesity epidemic is a major global health problem.

Obesity can induce metabolic disorders, such as type 2

diabetes, hypertension, cardiovascular disease and other

related diseases [1]. Obesity develops when energy intake

exceeds energy consumption, and the excessive energy is

stored in white adipose tissue (WAT) as triglycerides [2].

There are mainly two different types of fat in humans

and small mammals: white adipose tissue (WAT) and

brown adipose tissue (BAT) [3]. The main function of

WAT is to store energy; however, as a thermogenic organ,

BAT is characterized by multilocular lipid droplets and is

enriched in mitochondria [4]. BAT plays important roles in

maintaining the body temperature of human infants and

small mammals [5]. When the brown adipocytes are acti-

vated, the respiratory chain is uncoupled in the mitochon-

dria, and the chemical energy that would be stored as ATP

is converted to heat [6].

1.1 White adipose tissue

WAT is mainly divided into 2 types according to the fat

distribution: visceral (VIS) fat and subcutaneous (SC) fat.

Individuals with increased visceral fat show apple-shaped

obesity and have a high risk of metabolic syndrome. In

contrast, pear-shaped obesity, characterized by excessive

subcutaneous fat, shows a low risk of metabolic syndrome

[7]. Accumulating evidence has indicated that increased

VIS fat has detrimental effects on metabolism. First, Mice

that received SC fat tissue transplantation in the SC or VIS

fat region showed beneficial effects on energy metabolism

[8]. Second, aging is associated with many metabolic

syndrome disorders characterized by increased VIS fat and

reduced SC fat [9]. Third, obese individuals with metabolic
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disease have less SC fat than those without metabolic

disease [10]. Fourth, SC fat can secrete factors such as

leptin and adiponectin, which have beneficial effects on

metabolism [11, 12], whereas inflammatory factors such as

retinol binding protein (RBP4), tumor necrosis factor-a
(TNF-a), monocyte chemoattractant protein 1 (MCP1),

interleukin 8 (IL8), and interleukin 6 (IL6) are highly

expressed in VIS fat [13–16]. Fifth, M1 macrophages,

which are pro-inflammatory cells, are more abundant in

VIS fat than in SC fat [17].

1.2 Brown adipose tissue

BAT is a thermogenic organ. It is estimated that, when

BAT is maximally stimulated, 50 g of BAT on average in

adult humans could contribute to 20 % of the total resting

energy expenditure [18]. Cold exposure drastically acti-

vates BAT and clears excessive triglycerides in the plasma

by increasing lipid uptake into BAT, resulting in increased

energy metabolism and weight loss [19–21]. Because of the

important role of BAT in energy expenditure, an increase

in the amount and/or activity of BAT is a promising avenue

to treat obesity. Studies by our group and others have

shown that BAT transplantation can reverse metabolic

disorders such as high fat diet (HFD)-induced obesity and

type 2 diabetes [22, 23]. These lines of evidence clearly

indicate that BAT would be a great target organ to treat

obesity and its related diseases.

2 Functions of BAT

2.1 Thermogenesis and energy expenditure

BAT can produce heat through non-shivering thermogen-

esis to protect small mammals against cold environments

[24]. Human infants cannot shiver to produce heat; there-

fore, BAT mediated heat production is important to

maintain the body temperature [25]. Diet can also induce

BAT thermogenesis. Scientists have found that when rats

were fed a HFD, their weight gain is less than expected;

therefore, they hypothesized that the excessive energy

intake may have been consumed by activated brown fat

[26, 27]. The activity of brown fat showed a negative

correlation with body weight gain and body fat percentage.

More than half of all adults may have sufficient brown fat

to burn off white fat; however, brown fat is not fully

activated in 97 % of adults on average [18, 28]. The nat-

uralist Gessner [29, 30] first described BAT as being

‘‘neither fat nor flesh’’ in 1551. Thermogenic BAT was

finally discovered in 1960s; in the 1970s, researchers began

to believe that BAT is the tissue used for non-shivering

thermogenesis. The function of BAT depends on the

uncoupling protein (UCP1, thermogenin), which was first

discovered in 1978 [31]. In 1985, the 32,000-Da protein

UCP1 was cloned by Jacobsson et al. [32]. UCP1 dissipates

the proton electrochemical gradient in mitochondria, and

then ATP is catalyzed by ATP synthase to generate heat

(Fig. 1) [2, 33]. Mice with complete loss of BAT achieved

by overexpression of the diphtheria toxin fused Ucp1 gene

were extremely obese and severely insulin resistance [34].

These results further imply the important role of BAT in

whole-body energy metabolism. In 1997, researchers found

that Ucp1 knockout (KO) mice are cold insensitive, but

they cannot become obese when fed a HFD [35]. Con-

versely, Feldman et al. [36] showed that UCP1 ablation in

mice leads to obesity and metabolic dysfunction when mice

are housed under thermoneutral conditions (29 �C) where

thermal stress was eliminated, and the mice were meta-

bolically resting. Adipose tissue-specific overexpression of

Ucp1 in transgenic (TG) mice resulted in mice with

resistance to HFD-induced obesity [37]. These results

highlight that the increase in the thermogenic function of

BAT may contribute to the treatment of obesity. Adaptive

thermogenesis in BAT plays important roles in regulating

energy balance and defending the organism from cold

environments, and the loss of BAT thermogenesis would

result in obesity [38]. During the past few years, scientists

have found that adult humans also have functional BAT.

Remarkably, after cold stimulation at 19 �C, the skin

temperature of the supraclavicular region, which is close to

the BAT region in the BAT-positive individuals, is higher

than that in BAT-negative individuals [39]. These lines of

evidence highlight that BAT is an important tissue in

regulating energy expenditure.

Fig. 1 (Color online) The mechanism of BAT thermogenesis
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2.2 Blood glucose regulation

In addition to the thermogenic function of BAT, increasing

evidence has shown that BAT participates in blood glucose

regulation. Reports have demonstrated some Ucp1? brown

fat-like cells emerging in SC fat tissue in aP2-Prdm16 TG

mice. In addition, glucose metabolism was improved in the

aP2-Prdm16 TG mice compared with that in the wild type

(WT) mice after a HFD [40]. Ning et al. [41] found that

BAT-specific marker genes are highly expressed in BAT of

Lgr4 KO mice, and some brown fat-like cells have also

been observed in WAT. Importantly, Lgr4 KO mice

showed improved insulin sensitivity and glucose metabo-

lism. Cyclooxygenase 2 (Cox2) TG mice showed improved

energy metabolism after being anti-obesity induced by a

HFD [42]. Nishio et al. [43] programmed brown adipocytes

from human pluripotent stem cells (hESC-derived BAs,

hESCdBAs), and they expressed brown adipocyte marker

genes such as Ucp1 and Prdm16. Notably, hESCdBA-

transplanted mice showed improved lipid and glucose

metabolism. Increasing glucose utilization has been noted

in human BAT after cold exposure [21]. Interestingly, cold

exposure strikingly increased the glucose uptake in BAT

compared with that in muscle [44]. All together, these

results demonstrated that BAT could consume a large

portion of glucose.

2.3 Cytokine secretion

A large body of evidence has shown that WAT can secrete

adipokines such as leptin and adiponectin to regulate

energy metabolism. Most recently, BAT has also been

shown to secrete molecules called batokines. Batokines

regulate whole-body metabolism through the activation of

BAT or other tissue-like muscle and WAT. Fibroblast

growth factor 2 (FGF2), which is stimulated by norepi-

nephrine (NE), can regulate cell proliferation and capillary

growth [45]. Fibroblast growth factor 21 (FGF21) was

reported to be secreted from BAT during cold stimulation

and can regulate whole-body metabolism [46]. BAT-

secreted vascular endothelial cell growth factor (VEGF)

and angiotensinogen could regulate blood vessel growth in

BAT in response to sympathetic stimulation [47]. Another

potentially important batokine is IL6 [48, 49]. Mice

transplanted with BAT from healthy donor mice were

resistant to obesity; however, transplantation of BAT in

Il6-/- mice resulted in obesity after a HFD [23]. Our group

found that the transplanted BAT showed dramatically

decreased BAT-specific gene expression such as decreased

Ucp1 and Prdm16 expression. Therefore, we hypothesized

that some batokines secreted by BAT may play roles in

regulating energy metabolism [22].

3 Origin and development of BAT

Investigators have found that white adipocytes and brown

adipocytes share similarities in gene expression, cell mor-

phology and lipid metabolism; thus, it was assumed that

WAT and BAT were derived from a common develop-

mental origin [7, 50, 51]. However, many intriguing studies

have recently demonstrated that classical BAT and muscle

come from a common precursor. In 2008, using the DNA

microarray technique, Timmons et al. [52] found that BAT

and muscle possessed a common myogenic transcriptional

signature. Accordingly, the Seale group [53] demonstrated

that brown fat cells are differentiated from the precursors

that expressed the myogenic lineage marker gene-Myf5.

Interestingly, a CD34? cell population isolated from fetal

skeletal muscle cells was shown to differentiate into

functional brown adipocytes in vitro [54]. Another study

showed that the dermis, muscle and BAT arose from cells

expressing engrailed-1 (En-1) in the central dermomyo-

tome [55]. It is clear that BAT and skeletal muscle come

from Myf5-positive cells (Fig. 2). The development of

BAT is regulated by transcription factors, many types of

cytokines and hormones. Here, we describe several

important systemic factors that affect brown fat

development.

3.1 Thyroid hormone

Thyroid hormone (TH) participates in both the development

and function of BAT. There are 2 thyroid hormone analogs: tri-

iodothyronine (T3) and thyroxine (T4). T3 is the active form

produced by the deiodination of T4 by deiodinase activation

[56, 57]. Two types of deiodinases are responsible for this

process: iodothyronine deiodinase type-1 (Dio1) and iodo-

thyronine deiodinase type-2 (Dio2) [57]. T3 binds thyroid

hormone nuclear receptors (TR) to mediate its biology activity,

and 4 TR isoforms primarily bind to T3: TRa1, TRb1, TRb2,

and TRb3 [56]. Silva and Larsen [58] found that cold exposure

or NE can induce T3 production in BAT by stimulating Dio2.

The adaptive thermogenesis of BAT in hypothyroid animals is

impaired [59, 60], highlighting the importance of TH in BAT

function. In the presence of T3, NE promotes the synthesis of

UCP1 in BAT by binding to the beta-3 noradrenergic receptor.

However, the absence of T3 inhibits UCP1 synthesis, leading

to hypothermia [61]. Under thermoneutral conditions, TH

synergistically interacts with the sympatho-adrenal system to

stimulate thermogenesis [62]. Euthyroid rats treated with NE

exhibited a 2- to 3-fold increase in Ucp1 mRNA expression in

BAT. By contrast, the level of Ucp1 did not increase when the

same treatment was applied to hypothyroid rats [63]. Hypo-

thermia was often observed in hypothyroid rodents after cold

exposure. Interestingly, hypothermia can be promptly cor-

rected within 24–48 hours when hypothyroid rodents were
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given T4 to normalize the thyroid status [60]. Consistently,

TRa KO mice are cold intolerant and exhibit impaired BAT

thermogenesis when treated with NE. The latter finding sug-

gests that TRa is important for the thermogenic response to NE

stimulation [64]. Conversely, Dio2 KO mice showed an

impaired thermogenic response to cold exposure. More

importantly, under thermoneutral conditions such as 30 �C, the

Dio2 KO mice became obese and glucose intolerant after

60 days of HFD treatment compared with the WT mice [65].

These results emphasize the important role of theTH axis in the

regulation of BAT function.

3.2 Prostaglandin (PG)

Prostaglandins are important hormones derived from ara-

chidonic acid, which is a 20-carbon unsaturated fatty acid

[66]. PG production depends on the activity of cyclooxy-

genases (COXs), which catalyze the important step in PG

synthesis. There are 2 main COXs: COX1 and COX2—and

both have peroxidase and cyclooxygenase activity [67]. The

COX1 enzyme is thought to be produced constitutively

because it is found to be expressed in nearly all tissues,

whereas COX2 is an inducible enzyme [68]. Many studies

have found that COX plays an important role in whole-body

energy homeostasis. For example, inhibition of COX was

shown to reverse weight loss and improve energy expendi-

ture in both cancer patients and tumor-bearing mice model

[69, 70], and Cox2?/- mice are obese compared with WT

mice [71]. In addition, Cox2 TG mice showed increased PG

levels in WAT, showed no obesity, had lower levels of free

fatty acids, and had brown-like adipocytes in the intra-

abdominal WAT [42]. Madsen et al. [72] found that induc-

tion of Ucp1 expression in WAT depends on COX activity.

3.3 Bone morphogenetic protein (BMP)

Bone morphogenetic proteins (BMPs) belong to the

transforming growth factor-a (TGF-a) superfamily. BMPs

Fig. 2 (Color online) The model of BAT differentiation
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are required for the development and function of many

other tissues such as bone, cartilage, kidney, skin, teeth,

and lung [73]. In addition, BMPs can regulate adipogene-

sis. Tang et al. [74] found that BMP2 and BMP4 can

induce C3H10T1/2 pluripotent stem cells to differentiate

into adipocytes. There is report demonstrated a striking

reduction of WAT mass in mice lacking Schnurri-2, which

is an important mediator in the BMP2 signaling pathway

[75]. Adipose tissue-specific Bmp4 TG mice displayed an

increased metabolic rate and improved insulin sensitivity

and were resistant to HFD-induced obesity compared with

WT mice [76]. The Tseng group [3] demonstrated that

C3H10T1/2 cells could be differentiated into the brown

adipocyte lineage by BMP7. Strikingly, adenovirus-medi-

ated overexpression of Bmp7 in the mice induced an

increase in whole-body energy expenditure and reduced

body weight gain. In contrast, the function and develop-

ment of BAT is compromised in Bmp7-/- mice [77]. In

2012, Whittle et al. [78] found that BMP8b functioned in

the regulation of BAT thermogenesis, and Bmp8b-/- mice

displayed impaired thermogenesis, reduced energy expen-

diture and increased body weight. Additionally, mice

treated with a BMP-9 derivative (MB109) were resistant to

obesity [79]. Thus, BMP family members play important

roles in the development and function of BAT.

3.4 Fibroblast growth factor (FGF)

The FGF family comprises approximately 23 members that

play important roles in angiogenesis and wound repair [80,

81]. Sakaue et al. [82] found that the development of

subcutaneous WAT was markedly impaired in Fgf10-/-

neonate mice. In the rat, Fgf16 was found to be highly

expressed in BAT at embryonic days 17.5–19.5 [83],

suggesting that FGF16 might play important roles in

embryonic BAT development. Interestingly, Fgf19 TG

mice displayed higher energy expenditure and increased

glucose tolerance due to a dramatic increase in the BAT

mass [84]. The Fgf21 mRNA levels in BAT increased

significantly when the mice were treated with short-term

cold exposure or b3-adrenergic stimulation [85]. In paral-

lel, Fgf21 TG mice were resistant to obesity and had a large

amount of BAT and smaller subcutaneous adipocytes [86].

In line with this finding, Fisher et al. [87] found that FGF21

could induce the emergence of BAT-like cells in WAT.

These studies show that FGF plays important roles in BAT

development and function.

3.5 Peroxisome proliferator-activated receptor-c
coactivator 1a (PGC1a)

Puigserver et al. [88] first cloned Pgc1 from a brown fat

cDNA library and found that, under cold stimulation,

Pgc1a mRNA is highly increased in BAT and skeletal

muscle of mice; in vitro, ectopic expression of Pgc1a in

3T3-F442A cells was shown to induce the expression of

Ucp1 and mitochondria-related genes. Pgc1a-/- mice

showed abnormal BAT and reduced adaptive thermogenic

capacity in a cold environment [89]. Furthermore, Uldry

et al. [90] found that PGC1a was not required for brown

preadipocyte differentiation, but it was essential for the

thermogenic activation of brown adipocytes. Importantly,

skeletal muscle-specific Pgc1a TG (MCK-Pgc1a) mice

showed improvement in insulin signaling in aged mice

compared with WT mice [91].

3.6 PRDM16

Seale et al. [1] screened the transcribed murine transcrip-

tional components in BAT and WAT cells using global

expression analysis and found that the mRNA expression

of Prdm16 is approximately 15-fold enriched in BAT

compared with that in WAT. PRDM16 is a PR (PRD1-

BF1-RIZ1 homologous) domain-containing protein that

belongs to the Evi1 gene family [92]. Loss of PRDM16 in

BAT preadipocytes induced the cells to differentiate into

skeletal myoblasts. Conversely, ectopic expression of

Prdm16 in skeletal myoblasts promoted conversion of

muscle cells into brown fat cells [53]. Mechanistically,

PRDM16 regulates the switch of myoblasts to brown fat

cells by forming a complex with C/EBPb; formation of this

complex leads to the expression of Pparc and Pgc1a,

which are key regulators of brown fat programming [93].

Brown-like adipocytes can be found in SC fat tissue of

aP2-Prdm16 TG mice, and the TG mice showed improved

glucose tolerance, increased energy expenditure and

reduced body weight gain upon HFD feeding [40]. Finally,

PRDM16 can interact with PGC1a/b to activate brown fat-

specific genes, and it can form a complex with CtBPs to

suppress white fat gene expression [94].

3.7 MicroRNA

MicroRNAs (miRNAs) are post-transcriptional regulators

of gene expression, and they have been shown to partici-

pate in the regulation of various biological processes via

destabilization of mRNA and inhibition of target mRNA

translation [95]. MiRNAs were reported to regulate brown

fat cell development. Sun et al. [96] showed that the

miRNA cluster miR193b–365, which is abundant in BAT,

is important for brown fat differentiation. Brown prea-

dipocyte differentiation is impaired when miR193b and/or

miR365 are blocked, and myogenic-specific gene expres-

sion is induced; in contrast, under adipogenic conditions,

ectopic expression of miR193b can differentiate C2C12

myoblasts into brown adipocytes. MiR133a regulates
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adipocyte browning by targeting the 30 UTR of Prdm16,

and BAT adipogenesis is inhibited by overexpression of

miR133a. More importantly, miR133a-/- mice displayed

elevated brown and thermogenic gene expression in SC

adipose tissue [97]. Additionally, miR27 was found to be

down-regulated in BAT and SC adipose tissue after cold

exposure, and it can inhibit brown adipogenesis in BAT

and SC preadipocytes. Mechanistically, miR27 may regu-

late BAT development by targeting some BAT-specific

genes such as Prdm16, Ppara [98]. Further study has

shown that miR196a is up-regulated in WAT when mice

are treated with cold exposure or b-adrenergic stimulation.

An abundance of brown adipocyte-like cells can be found

in WAT in miR196a TG mice, which showed increased

energy expenditure and resistant to obesity. MiR196a can

induce brown adipogenesis by indirectly increasing

C/EBPb, which is essential for brown fat development

[99]. MiR155 was also enriched in BAT, and blockade of

miR155 induced brown adipocyte differentiation and pro-

moted browning in white adipocytes. Thus, miR155-/-

mice exhibited increased BAT function. By contrast, BAT

function is impaired in miR155 TG mice. MiR155 regulates

brown adipogenesis by forming a bistable feedback loop

with C/EBPb [100]. Karbiener et al. [101] also found that

the miR26 family is involved in human white and brown

adipocyte differentiation: miR26 was increased in WAT

upon cold exposure, and miR26a significantly up-regulated

Ucp1 expression in WAT and promoted energy dissipation.

Thus, accumulating evidence has indicated that various

miRNAs are involved in brown adipocyte development and

function, and microRNA-mediated gene therapy might be a

great option for treating obesity and its related diseases.

4 Beige adipocytes

Studies have demonstrated that brown and white adipo-

cytes are derived from different lineages: brown adipocytes

come from a common Myf5? precursor of myogenic cells

[53]. Ucp1-expressing cells are known to adopt a multi-

locular appearance in WAT of mice treated with cold

exposure or b3-adrenoceptor agonists [102, 103]. The

brown adipocytes appearing in WAT are often called

‘‘inducible, beige, or brite’’. Consequently, the Spiegelman

group [104] found that the brown, white, and beige cells

are derived from different precursors. Compared with vis-

ceral adipocytes, the gene expression profiles in subcuta-

neous adipocytes are similar to those in classical brown fat

cells, and Ucp1 gene expression profiles in the beige lines

are similar to those observed in the interscapular BAT

(iBAT) cell lines upon cAMP stimulation. Additionally,

Vitali et al. [105] demonstrated that the beige adipocytes

are enriched in inguinal WAT, and the white adipocytes

can transform into beige adipocytes. Wang et al. [106]

showed that the beige adipocytes in white adipose tissue

mainly arise from de novo adipogenesis rather than trans-

differentiation from mature white adipocytes. Recently,

several landmark studies have discovered active BAT in

adult humans. In those studies, the researchers proved the

existence of brown fat in adults using positron-emission

tomography and computed tomography (PET-CT), which

uses 18F-fluorodeoxyglucose (18F-FDG) as a radioactive

tracer. Under normal temperature conditions, the rate of

functional brown fat in the human body is very low: 3.1 %

in males and 7.5 % in females. However, under cold

stimulation, functional brown fat can be detected in almost

all individuals; brown fat activity was reduced gradually

with aging, and brown fat activity decreased with the

occurrence of obesity [107, 108]. Two exciting reports

have confirmed that classical brown fat can be found in

both adults and children. The Tseng group [109] accurately

investigated that adipose tissues are different according to

the depots (from the most superficial to the deepest) in the

adult neck. The deeper fat displayed the classical BAT

phenotype. Another study found that adipocytes in the peri-

renal and supraclavicular regions, in contrast to classical

iBAT in infants, showed iBAT morphology and molecular

characteristics [110]. These data suggest that there are two

types of functional brown fat tissues in human body and

that they may play important roles in the process of pre-

venting obesity and its related metabolic diseases.

5 Activation of BAT and beige adipocytes

With the discovery of the existence of functional BAT in

adults and the potential role of BAT in protecting against

obesity and its related diseases, a major question arises:

how can we activate BAT and beige fat? In this section, we

will discuss some factors that can regulate both BAT and

beige fat activation.

5.1 Cold exposure

Cold exposure is now believed to be the safest way to

activate BAT, thereby significantly increasing thermogen-

esis-related protein expression in BAT [111]. The weight

of iBAT and the energy expenditure capacity increased

upon cold stimulation [112]. Accumulation of beige adi-

pocytes occurs in WAT when mice are treated with cold

exposure [105]. Using PET-CT analysis, Yoneshiro et al.

[20] found that the energy expenditure is positively cor-

related with the activity of BAT: the activity of BAT was

stimulated, as well as glucose utilization, in the participants

under cold stimulation, and the participants showed a

reduced weight with 6 weeks of cold exposure (17 �C/two

Chin. Sci. Bull. (2014) 59(31):4030–4040 4035
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hours a day). Ouellet et al. [21] and Muzik et al. [113] used

dynamic oxygen15 (15O) PET imaging and 11C-acetate

imaging to study BAT thermogenesis in adults under cold

stimulation. Acetate can be used to measure the oxidative

metabolism of tissue and oxygen can reflect the oxygen

intake in the tissue. Those studies confirmed that cold

exposure could activate brown fat. Recently, Anouk et al.

[114] showed that, after 10 days of cold stimulation, brown

fat activity and non-shivering thermogenesis (NST) in the

body increased. It is known that the sympathetic nervous

system regulates the stimulation of BAT under a cold

environment [115]. The sympathetic nervous system can

activate BAT by releasing NE. The function of NE is

mediated by the b-adrenergic receptor (b-AR) system [6].

Mice that lack the three receptors become obese [116],

further implicating the importance of the sympathetic

nervous system in BAT activation.

5.2 Small molecular compounds

Epinephrine and caffeine can synergistically stimulate

sympathetic nerves to release noradrenaline, which can

activate brown fat, leading to increased oxygen consump-

tion in rats [117]. Both ephedrine and cold stimulation can

increase whole-body metabolism; however, unlike cold

stimulation, ephedrine can induce some side effects, such

as an increased heart rate and increased blood pressure

[118]. Capsaicin is an ingredient in red pepper, and 6.0 mg/kg

of capsaicin can enhance the oxygen consumption in

experiments with rats [119]. Yoshioka et al. [120] observed

an immediate increase in energy expenditure in humans

after consuming red pepper compared with control sub-

jects. A rodent study found that the animals will not

respond to capsaicin stimuli when they received b-AR

inhibitor treatment in advance, indicating that capsaicin

might enhance body metabolism through activation of b-

AR directly or indirectly [121].

5.3 Secretory factors

The function of reducing body weight gain by brain-

derived neurotrophic factor (BDNF) in the ventromedial

nucleus of the hypothalamus (VMH) partially depends on

BAT activation [122]. BMP7 and BMP8b are important for

maintaining body energy balance; both proteins can

increase brown fat thermogenesis [77, 78]. Orexin is a

neuropeptide that can regulate appetite and arousal. Orex-

in-/- mice showed impaired BAT thermogenic function

and became obese. Orexin is required for brown fat pre-

cursor cell differentiation because the developmental

defects of brown fat precursor cells in Orexin-/- mice can

be rescued when orexin injected into these mice [123].

Atrial natriuretic peptide (ANP) can stimulate the

production of the second messenger guanosine 30,50-
monophosphate by binding to its receptor [124]. A study

found that ANP can activate lipolysis in mice and humans,

and ANP strongly increases Ucp1 and Pgc1a expression in

WAT and BAT of mice [125]. FGF21 and irisin were

recently identified as regulators of brown fat activity;

FGF21 is mainly expressed in the liver, whereas irisin is

expressed in skeletal muscle. Both proteins can increase

brown fat-specific gene expression in white adipose tissue,

further promoting body energy metabolism and weight loss

[87, 126]. Pgc1a was shown to be induced by exercise and

can stimulate mitochondria biogenesis in muscle. Muscle-

specific Pgc1a TG mice showed that BAT-specific genes

are dramatically induced in white adipose tissue. Using

gene expression array and bioinformatics approaches,

Boström et al. [126] demonstrated that PGC1a stimulates

the expression of the muscle membrane protein FNDC5.

Furthermore, the authors found that the Fndc5 coding

protein irisin is secreted into the blood, and then activates

subcutaneous adipose tissue browning processes and Ucp1

expression. Moreover, systemic irisin treatment increased

whole-body energy metabolism. The identification of irisin

as a new hormone that increases energy metabolism could

open up a new avenue to treat obesity and related diseases

such as type 2 diabetes. The BAT transplantation study

found that IL6 secreted from brown fat promotes the

activity of intrinsic brown fat in mice by increasing the

levels of serum FGF21 [23]. Those studies illustrate that

secretory factors can be therapeutic targets for the pre-

vention of obesity by regulating the activity of brown fat

and inducing white fat browning.

6 Prospects of future study

Many promising studies have shown BAT to play potential

roles in body energy metabolism regulation [127, 128].

Thus, BAT may be a promising target to treat obesity and

its related diseases. Because BAT is found in adults [18,

107, 129, 130], and BAT activity has a negative correlation

with BMI and age [130, 131], researchers have been

inspired to eliminate traditional therapeutic methods such

as reducing energy intake and suppressing energy absorp-

tion and to focus more on increasing energy consumption.

If BAT can be activated efficiently to burn redundant white

fat in vivo or trans-differentiate a portion of redundant

WAT to BAT, a significant advance would be made in the

prevention and treatment of obesity. It has been demon-

strated that WAT may partially convert to BAT under

controlled conditions such as cold stimulation [132] or

drug treatment such as rosiglitazone and b-adrenergic

agonists [133–135]. However, thus far, such agents have

demonstrated too many unwanted side effects, and further
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investigations in clinical settings are needed [136, 137].

Most recently, C/EBPb and PRDM16 were demonstrated

to be important transcriptional factors that could convert

murine fibroblasts to brown adipocytes [93]. In addition,

some microRNAs (e.g., microRNA196a) could re-program

fibroblasts into brown adipocytes [99]. Nevertheless, it

remains unknown, which factors are involved in the acti-

vation of BAT, and the trans-differentiation techniques and

efficiency of reprogramming into brown adipocytes are still

under way. The long-term goal of our research is to iden-

tify proteins that can activate BAT, the results of which

may lead to the development of a new class of anti-obesity/

anti-diabetes drugs. Until now, many exciting results have

come from animal experiments, and many differences have

been found between human and rodents. Thus, it will be

essential to study the BAT activation mechanism in

humans in the future. Since Konrad Gesner [29] found

brown fat in 1551, no direct study has shown that brown fat

is involved in whole-body energy metabolism. Stanford

et al. [23] and Liu et al. [22] proved almost at the same

time that brown fat transplantation can improve original

obesity and developing obesity. However, the underlying

specific molecular mechanism has not been elucidated.

Therefore, understanding the molecular mechanism of

brown fat activation and finding an effective way to acti-

vate brown fat can provide a new method to prevent or treat

obesity. Studying the activation mechanism of brown fat

will be worthwhile for a period of time in the future.
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