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The replicator equation is the first and most important game
dynamics studied in connection with evolutionary game theory. It
was originally developed for symmetric games with finitely many
strategies. Properties of these dynamics are briefly summarized for
this case, including the convergence to and stability of the Nash
equilibria and evolutionarily stable strategies. The theory is then
extended to other game dynamics for symmetric games (e.g., the
best response dynamics and adaptive dynamics) and illustrated by
examples taken from the literature. It is also extended to multi-
player, population, and asymmetric games.
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Game dynamics model how individuals or populations change
their strategy over time based on payoff comparisons. This

contrasts with classical noncooperative game theory that analyzes
how rational players will behave through static solution concepts
such as the Nash equilibrium (NE) (i.e., a strategy choice for each
player whereby no individual has a unilateral incentive to change
his or her behavior). In general, game dynamics assume that
strategies with higher payoff do better. As we will see, the limiting
behavior of these dynamics (i.e., the evolutionary outcome) is
often a NE with additional stability properties.
The most important game dynamics is the replicator equation,

defined for a single species by Taylor and Jonker (1) and named
by Schuster and Sigmund (2). The replicator equation is the first
game dynamics studied in connection with evolutionary game
theory, a theory that was developed by Maynard Smith and Price
(3) (see also ref. 4) from the biological perspective in order to
predict the evolutionary outcome of population behavior without
a detailed analysis of such biological factors as genetic or popu-
lation size effects. With payoff translated as fitness (i.e., repro-
ductive success), the frequency of a strategy in a large, well-mixed
single species changes under the (continuous-time) replicator
equation at a per capita rate equal to the difference between
its expected payoff and the average payoff of the population
(Eq. 1). If each strategy payoff is constant (in particular, indepen-
dent of strategy frequency), the ultimate outcome of evolution is
that everyone plays the strategy with highest payoff, a result that
is true for all game dynamics and not only the replicator equa-
tion. In biological terms, we have Darwin’s survival of the fittest
through natural selection.
Of more interest is what happens when individual payoff

depends on the actions of others (i.e., when there is an actual
game involved). An early success of evolutionary game theory
is then the result that an evolutionarily stable strategy (ESS) is
dynamically stable for the single species replicator equation
described above (1, 5). The ESS, an intuitive concept of unin-
vadability originally generalizing the “unbeatable” sex ratios ana-
lyzed by Hamilton (6), can be defined solely in terms of payoff
comparisons (4, 7). Strategic (i.e., game-theoretic) reasoning has
since taken on an increasingly prominent role in predicting both
individual and population behaviors in biological systems (8).
Evolutionary game theory has long since expanded beyond its

biological roots and become increasingly important for analyzing
human and/or social behavior. Here, changes in strategy fre-
quencies do not result from natural selection; rather, individuals
(or societies) alter their behavior based on payoff consequences.

The replicator equation then emerges from, for instance,
individuals making rational decisions on how to imitate ob-
served strategies that currently receive higher payoff. De-
pending on what information these decision makers have (and
how they use this information), a vast array of other game dy-
namics are possible (9–11).
Evolutionary game theory and its corresponding game dy-

namics have also expanded well beyond their initial emphasis on
single-species (i.e., symmetric) games with a finite set of (pure)
strategies where payoffs result from random one-time interactions
between pairs of individuals (also called “two-player symmetric
normal form games” or, more simply, “matrix games”). In this
paper, we briefly highlight some features of matrix games at the
beginning of the following section before generalizing to other
classes of symmetric games. These are population games, games
with a continuum of pure strategies, and multiplayer games. We
then consider two-player asymmetric games, including extensive
form games (where pairs of individuals have a series of inter-
actions with each other and the set of actions available at later
interactions may depend on what choices were made in earlier
ones) as well as asymmetric population games and games with
continuous strategy spaces.

Symmetric Games
Matrix games have a finite set ofm pure strategies, fe1; e2; . . . ; emg,
available for individuals to play. The m×m payoff matrix A
has entries aij = πðei; ejÞ (the payoff to ei when playing against ej),
for i; j= 1; . . . ;m. To obtain the continuous-time, pure-strategy
replicator equation (Eq. 1) following the original fitness approach
(1), the per capita growth rate in the number ni of individuals
using strategy ei at time t is taken as the expected payoff of
ei from a single interaction with a random individual in the
large population. That is, _ni = ni

Pm
j=1πðei; ejÞpj ≡ niπðei; pÞ, where

p is the population state in the (mixed) strategy simplex
Δm ≡ fðp1; p2; . . . ; pmgj

Pm
j=1 pj = 1; 0≤ pj ≤ 1g with pi = ni=

Pm
j=1nj

the proportion of the population using strategy ei at time t. A
straightforward calculus exercise yields the replicator equation on
Δm:

_pi = piðπðei; pÞ− πðp; pÞÞ  for  i= 1; . . . ;m; [1]

where πðp; pÞ=Pm
j=1 piπðei; pÞ is the average payoff of an individ-

ual chosen at random (i.e., the population mean payoff). From
the theory of dynamical systems, trajectories of [1] leave the
interior of Δm forward invariant as well as each of its faces (12).
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Theorem 1. The replicator equation for a matrix game satisfies:

a) A stable rest point is a NE.
b) A convergent trajectory in the interior of the strategy space evolves

to a NE.
c) A strict NE is locally asymptotically stable.

Theorem 1 is the Folk Theorem of Evolutionary Game Theory
(9, 12, 13) applied to the replicator equation [see SI Appendix for
definitions of technical terms in the statement of the theorem (SI
Appendix, section 1) and throughout the paper]. The three con-
clusions are true for many matrix game dynamics (in either discrete
or continuous time) and serve as a benchmark to test dynamical
systems methods applied to general game dynamics and to non-
matrix evolutionary games such as those considered in the re-
maining sections of this paper.
The Folk Theorem means that biologists can predict the

evolutionary outcome of their stable systems by examining NE
behavior of the underlying game. It is as if individuals in these
systems are rational decision makers when in reality it is natural
selection through reproductive fitness that drives the system to
its stable outcome. This has produced a paradigm shift toward
strategic reasoning in population biology. The profound influence
it has had on the analysis of behavioral ecology is greater than
earlier game-theoretic methods applied to biology such as Fisher’s
(14) argument [see also Darwin (15) and Hamilton (6)] for the
prevalence of the 50:50 sex ratio in diploid species and Hamilton’s
(16) theory of kin selection.
The importance of strategic reasoning in population biology is

further enhanced by Theorem 2 that is based on the intuitive
concept of an ESS (3) defined by Maynard Smith (ref. 7, p. 10) as
a “strategy such that, if all members of a population adopt it,
then no mutant strategy could invade the population under the
influence of natural selection.” Maynard Smith goes on to say on
the same page that the “definition of an ESS as an uninvadable
strategy can be made more precise . . . if precise assumptions are
made about the evolving population.” In a matrix game, if most
individuals in the population use p*∈Δm with the rest using
a mutant strategy p, then the mutant will go extinct in this two-
strategy model (SI Appendix, section 1) if and only if

i) πðp; p*Þ≤ πðp*; p*Þ (NE condition) and
ii) πðp*; pÞ> πðp; pÞ if πðp; p*Þ= πðp*; p*Þ (stability condition).

p*∈Δm is then an ESS if it satisfies these two conditions for all
other p∈Δm.

Theorem 2.

a) p* is an ESS of a matrix game if and only if πðp*; pÞ> πðp; pÞ for
all p∈Δm sufficiently close (but not equal) to p*.

b) An ESS p* is a locally asymptotically stable rest point of the
replicator equation.

c) An ESS p* in the interior of Δm is a globally asymptotically stable
rest point of the replicator equation.

The equivalent condition for an ESS contained in Theorem 2a
is the more useful characterization when generalizing the ESS
concept to other evolutionary games. It is called “locally superior”
(17), “neighborhood invader strategy” (NIS) (18), or “neighbor-
hood superior” (19). One reason for the different names for this
concept is that there are several ways to generalize local supe-
riority to other evolutionary games and these have different
stability consequences.
The most elegant proof (5) of the stability statements in

Theorem 2 b and c shows that V ðpÞ≡∏p
ppi
i , where the product

is taken over fi : ppi > 0g is a strict local Lyapunov function
[i.e., V ðp*Þ>V ðpÞ and _V ðpÞ=V ðpÞðπðp*; pÞ− πðp; pÞÞ> 0 for all
p∈Δm sufficiently close but not equal to an ESS p*]. It is tempting
to add these stability statements to the Folk Theorem because

they remain valid for many matrix game dynamics through the
use of other Lyapunov functions. There are several reasons to
avoid this temptation.
First, these statements are not true for discrete-time matrix

game dynamics (SI Appendix, section 1) as shown already for
three-strategy games that exhibit cyclic dominance. Secondly,
global stability of an interior ESS in these games is not true for
important classes of game dynamics such as the monotone se-
lection dynamics (17). Furthermore, the three-strategy games of
Example 1 demonstrate that trajectories for matrix games may
converge to a NE that is not an ESS or approach a heteroclinic
cycle around the boundary of the strategy simplex.

Example 1 (Generalized Rock–Scissors–Paper Game): Consider
the three-strategy rock–scissors–paper (RSP) matrix game with
payoff matrix A given by

R S P
R
S
P

2
4 0 b2 −a3
−a1 0 b3
b1 −a2 0

3
5 =

R S P2
4 0 6 −4
−4 0 4
2 −2 0

3
5 :  [2]

All such games with positive parameters ai and bi exhibit cyclic
dominance, whereby R beats S (i.e., R strictly dominates S in the
two-strategy game based on these two strategies), S beats P, and
P beats R. This dominance implies that there is no NE on the
boundary of Δ3. In fact the unique NE for [2] is the completely
mixed strategy p*= ð10=29; 8=29; 11=29Þ in the interior. It is glob-
ally asymptotically stable under the replicator equation (Fig. 1)
but p* is not an ESS because πðe1; p*Þ= πðp*; p*Þ= 4=29 and
πðp*; e1Þ=−ð10=29Þ< 0= πðe1; e1Þ.
The matrix game with payoff matrix −A also exhibits cyclic

dominance and its trajectories under the replicator equation are
the same as Fig. 1 except the direction is reversed. That is, all in-
terior trajectories of [1] (except the one initially at p*) approach
a heteroclinic cycle around the boundary that joins the three
pure strategies in the order e3; e2; e1; e3. It is also well known (12)
that the standard RSP game (with all ai = bi = 1 in [2]) has pe-
riodic orbits of [1] around the unique NE p*= ð1=3; 1=3; 1=3Þ.

Cyclic behavior is common not only in biology (e.g., predator–
prey systems) but also in human behavior (e.g., business cycles,
the emergence and subsequence disappearance of fads, etc.).
Thus, it is not surprising that evolutionary game dynamics in-
clude cycles as well. In fact, as the number of strategies increases,
even more rich dynamical behavior such as chaotic trajectories
can emerge (12).
What may be more surprising is the many classes of matrix

games (10) for which these complicated dynamics do not appear
(e.g., potential, stable, supermodular, zero-sum, doubly symmetric
games) and for these the evolutionary outcome is often predicted
through rationality arguments underlying Theorems 1 and 2. The

Fig. 1. Trajectories of the replicator equation for the RSP game with pay-
off matrix 2.
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emphasis in the remainder of the paper is on such situations for
nonmatrix games.
Before doing so, it is important to mention that the replicator

equation for doubly symmetric matrix games is formally equiv-
alent to the continuous-time model of natural selection at a single
(diploid) locus with m alleles A1; . . . ;Am (12, 20). Specifically, if
aij is the fitness of genotype AiAj and pi is the frequency of allele
Ai in the population, then [1] is the continuous-time selection
equation of population genetics (14). It can then be shown that
population mean fitness πðp; pÞ is increasing (this is one part of
the fundamental theorem of natural selection). Furthermore,
the locally asymptotically stable rest points of [1] correspond
precisely to the ESSs of the symmetric payoff matrix A and all
trajectories in the interior of Δm converge to a NE of A (20).
Analogous results hold for the nonoverlapping generation (via-
bility) selection model (12).

Population Games. Symmetric population games are the most
straightforward generalizations of matrix games. In a symmetric
population game at fixed population size with finitely many pure
strategies, the payoff πðei; pÞ of strategy ei is an arbitrary con-
tinuous function of the population state p∈Δm. Matrix games
then correspond to the case where πðei; pÞ is linear in the com-
ponents of p. If payoff is nonlinear, these are called “playing-the-
field” evolutionary games (7). In either case, equating fitness to
reproductive success again leads to the replicator equation
(Eq. 1) on Δm. The Folk Theorem is true for these population
games as is Theorem 2b when an ESS is defined as locally
superior using Theorem 2a. [The use of the term ESS becomes
problematic for nonmatrix games because it often has several
different possible meanings. For instance, an ESS as in Theorem
2b is called a “local ESS” by Hofbauer and Sigmund (9) to em-
phasize that the condition πðp*; pÞ> πðp; pÞ holds only for p∈Δm

that are sufficiently close (but not equal) to p*. When there is
ambiguity, we will instead use the phrase “locally superior” or
“neighborhood superior” as appropriate.] On the other hand,
an interior ESS need no longer be globally asymptotically stable
(compare with Theorem 2c) because there may be more than one
such ESS.
Population games have important applications to biology [e.g.,

sex-ratio game; Maynard Smith (7)] as well as to human behavior
[e.g., congestion games; Sandholm (10)]. The following example,
taken from behavioral ecology, illustrates that important game
dynamics other than the replicator equation arise naturally.

Example 2 (Habitat Selection Game and Ideal Free Distribution):
The foundation of the habitat selection game for a single species
was laid by Fretwell and Lucas (21) before evolutionary game
theory appeared. They were interested in predicting how a spe-
cies (specifically, a bird species) of fixed population size should
distribute itself among several resource patches if individuals
would move to patches with higher fitness. They argued the
outcome would be an ideal free distribution (IFD) defined as
a patch distribution whereby the fitness of all individuals in any
occupied patch would be the same and at least as high as what
would be their fitness in any unoccupied patch (otherwise some
individuals would move to a different patch). If there are H
patches (or habitats) and an individual’s pure strategy ei corre-
sponds to being in patch i (for i= 1; 2; . . . ;H), we have a popu-
lation game by equating the payoff of ei to the fitness in this
patch. The verbal description of an IFD in this “habitat selection
game” is then none other than that of a NE.
If patch fitness is decreasing in patch density (i.e., in the pop-

ulation size in the patch), Fretwell and Lucas proved that there is
a unique IFD at each fixed total population size. Moreover, the
IFD is an ESS that is globally asymptotically stable under the
replicator equation (22). To see this, let p∈ΔH be a distribution
among the patches and πðei; pÞ be the fitness in patch i. Then

πðei; pÞ depends only on the proportion pi in this patch [i.e., has
the form πðei; piÞ]. Because the vector field ðπðe1; pÞ; . . . ; πðeH ; pÞÞ
is the gradient of a real-valued function FðpÞ defined on ΔH , we
have a potential game (SI Appendix, section 1.1). Following
Sandholm (10), it is a strictly stable game and so has a unique
ESS p* which is globally asymptotically stable under the repli-
cator equation (as well as many other game dynamics).
Although Fretwell and Lucas (21) did not attach any dynamics

to their model, movement among patches is discussed implicitly.
Following Krivan et al. (22), let IijðpÞ be the probability an in-
dividual in patch j moves to patch i per unit time if the current
patch distribution is p. Then the corresponding continuous-time
migration (or dispersal) dynamics in vector form is

_p= IðpÞp− p; [3]

where IðpÞ is the H ×H migration matrix with entries IijðpÞ. The
following result (22) uses the (decreasing) Lyapunov function
W ðpÞ≡max1≤i≤H  πðei; pÞ.

Theorem 3. Suppose patch fitness is a decreasing function of patch
density in a single-species habitat selection game. Then any migration
dynamics 3 that satisfies the following two conditions evolves to the
unique IFD.

a) Individuals never move to a patch with lower fitness.
b) If there is a patch with higher fitness than some occupied patch,

some individuals move to a patch with highest fitness.

We illustrate Theorem 3 when there are three patches. Sup-
pose that at p, patch fitnesses are ordered πðe1; pÞ> πðe2; pÞ>
πðe3; pÞ and consider the two migration matrices

I1ðpÞ≡
2
4 1 1 1
0 0 0
0 0 0

3
5  I2ðpÞ≡

2
4 1 1=3 1=3
0 2=3 1=3
0 0 1=3

3
5:

I1ðpÞ corresponds to a situation where individuals who move go
to patch 1 because they know it has highest fitness. The corre-
sponding games dynamics

_p=BRðpÞ− p; [4]

where BRðpÞ is the best response strategy e1 to p is called the best
response dynamics (SI Appendix, section 1.1).
On the other hand, I2ðpÞ models individuals who only gain

fitness information by sampling one patch at random, moving to
this patch if it has higher fitness than its current patch [e.g., an
individual in patch 2 moves if it samples patch 1 and otherwise
stays in its own patch (with probabilities 1=3 and 2=3, respec-
tively)]. Several trajectories for each of these two migration dy-
namics are illustrated in Fig. 2 (see also SI Appendix, Fig. S1). As

Fig. 2. Trajectories for the habitat selection game with patch fitness functions
πðe1,pÞ= 1−p1,πðe2,pÞ= 0:8½1− ð10p2=9Þ� and πðe3,pÞ= 0:6½1− ð10p3=8Þ�. (A)
Best response dynamics with migration matrices of the form I1ðpÞ and (B)
dynamics for nonideal animals with migration matrices of the form I2ðpÞ.
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can be seen, all converge to the IFD as they must by Theorem 3,
even though their paths to this rational outcome are quite different.
Finally, suppose information is gained by sampling a random

individual, moving to its patch with probability proportional to the
fitness difference only if the sampled individual has higher fitness.
It is well known (13) that this “proportional imitation rule” leads to
the replicator equation (SI Appendix, section 1.1). Since the pro-
portional imitation rule satisfies the two conditions of Theorem 3,
the unique IFD is globally asymptotically stable under [1].
Fretwell and Lucas (21) briefly consider their IFD concept when

patch fitness increases with patch density when density is low
(the so-called Allee effect). Although Theorem 3 no longer
applies, these habitat selection games are still potential games
(but not strictly stable). Thus, all interior trajectories under many
game dynamics (including the replicator equation and best re-
sponse dynamics) converge to a NE (10). Several NE are already
possible for two-patch models, some of which are locally asymp-
totically stable and some not. There is a difference of opinion
whether to define IFD as any of these NE or restrict the concept to
only those that are locally superior and/or asymptotically stable (23).
Habitat selection games also provide a natural setting for the

effect of evolving population sizes, a topic of obvious importance
in population biology that has so far received little attention
in models of social behavior. A population-migration dynamics
emerges if population size N evolves through fitness taken lit-
erally as reproductive success (SI Appendix, section 1.1). As dis-
cussed in SI Appendix, section 1.1, if patch fitness is positive when
unoccupied, decreases with patch density and eventually becomes
negative, then the system evolves to carrying capacity whenever
the migration matrix Iðp;NÞ satisfies the two conditions in
Theorem 3 for each N. In particular, the evolutionary outcome
is independent of the time scale of migration compared with
that of changing population size, a notable result since it is often
not true when two dynamical processes are combined.

Games with Continuous Strategy Spaces. Game dynamics when
players can choose from a continuum of pure strategies S become
complicated, especially if individual payoff depends on the
population state [which is now a distribution in the set of
probability measures ΔðSÞ on S]. One approach to avoid these
complications is to assume that the population is always mono-
morphic at its mean x∈ S. When S is a convex compact subset
of R (i.e., a closed and bounded interval), it is further assumed
that x evolves through trait substitution in the direction y of
nearby mutants that can invade due to their higher payoff than
x when playing against this monomorphism. If πðy; xÞ is the
payoff of a mutant using strategy y in an otherwise mono-
morphic population x, then x increases (decreases) if πðy; xÞ is
an increasing (decreasing) function of y for y close to x.
The most elementary dynamics to model these assumptions is

called the “canonical equation of adaptive dynamics” which has
the form (up to a change in time scale)

_x=
∂πðy; xÞ

∂y

����
y=x

≡ π1ðx; xÞ: [5]

A rest point x* [i.e., π1ðx*; x*Þ= 0] is convergence stable (24) if it
is asymptotically stable under [5]. x* is convergence stable if and
only if d=dx½∂πðy; xÞ=∂yjy= x�

��
x=x*

= π11ðx*; x*Þ+ π12ðx*; x*Þ< 0. On
the other hand, x* is a neighborhood-strict NE if and only if
π11ðx*; x*Þ< 0 (SI Appendix, section 1.2).
Thus, under adaptive dynamics, a strict NE is not necessarily

attainable from nearby populations (i.e., it need not be conver-
gence stable) and, conversely, a convergence stable rest point
need not be a NE. That is, parts a and c of the Folk Theorem are
not true. A convergence stable x* that is not a neighborhood-
strict NE is called an “evolutionary branching point” (25) since,

in a dimorphic population with some individuals using pure
strategies on either side of x*, these nearby strategies evolve
away from x* [as can be shown by the second order Taylor
polynomial expansion of πðy; xÞ about ðx*; x*Þ]. For this reason,
only those x* that satisfy both conditions i and ii given by

i) π11ðx*; x*Þ< 0 (neighborhood-strict NE condition) and
ii) π11ðx*; x*Þ+ π12ðx*; x*Þ< 0 (convergence stability condition)

are considered to be stable for models based on adaptive dynamics.
Conditions i and ii respectively are equivalent to πðx; x*Þ<

πðx*; x*Þ and πðy; xÞ> πðx; xÞ if x is close to x* and y is near x but
closer to x*. These define the concept of a continuously stable
strategy (CSS) in terms of static payoff comparisons as in-
troduced earlier by Eshel (26) to generalize the ESS to one-
dimensional (1D) continuous strategy spaces. A CSS is then
stable for models based on adaptive dynamics.
However, a CSS is not stable under the replicator equation

(Eq. 6) for continuous strategy spaces. When payoffs result from
pairwise interactions between individuals and πðx; yÞ is inter-
preted as the payoff to x against y, then the expected payoff to x
in a random interaction is πðx;PÞ≡ R

Sπðx; yÞPðdyÞ, where P is the
probability measure on S corresponding to the current distribu-
tion of the population’s strategies. With πðP;PÞ≡ R

Sπðx;PÞPðdxÞ
the mean payoff of the population and B a Borel subset of S, the
replicator equation (27)

dPt

dt
ðBÞ=

Z
B

ðπðx;PtÞ− πðPt;PtÞÞPtðdxÞ [6]

has a unique solution given any initial P0 in the infinite dimensional
space ΔðSÞ of Borel probability measures over the strategy space S
(28) (SI Appendix, section 1.2). The replicator equation describes
the evolution of the population strategy distribution P∈ΔðSÞ.
From this perspective, the canonical equation becomes a heuristic
tool that approximates the evolution of the population mean by
ignoring effects due to the diversity of strategies in the population.
From SI Appendix, section 1.2, to guarantee x* is stable under

[6], x* must be a neighborhood-strict NE as well as a NIS defined
as πðx*; xÞ> πðx; xÞ for x near x* (29). These two conditions are
equivalent to x* being neighborhood superior [i.e., πðx*;PÞ>
πðP;PÞ for all distributions P whose support is sufficiently close
but not equal to x*] (19).
The replicator equation as well as concepts of neighborhood-

strict NE, NIS, and neighborhood superiority have straightforward
generalizations to multidimensional continuous strategy spaces
where the stability results remain true (19). The CSS and canon-
ical equation of adaptive dynamics have also been generalized
(30, 31) but these depend on the direction(s) in which mutants
are more likely to appear. If x* is stable for all such directions
(called “strong convergence stability”), the corresponding CSS
has similar strong stability properties as the ESS does for
matrix games.

Multiplayer Games. Matrix games are special types of population
games where individuals interact in two-player contests. In mul-
tiplayer games with a finite set S of pure strategies, interactions
are formed among n players where n> 2 is fixed. For example, if
n= 3, the expected payoff to ei in a random interaction if the
population has state p∈Δ3 is

πðei; pÞ=
Xm
j;k=1

pjpkπ
�
ei; ej; ek

�
;

where the payoff πðei; ej; ekÞ to ei in the symmetric three-player
game is assumed to depend on the other two players but not their
order [i.e., πðei; ej; ekÞ= πðei; ek; ejÞ].
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Multiplayer games are then a class of population games where
payoffs are nonlinear in the population state. Thus, by the sec-
tion Population Games, the Folk Theorem and Theorem 2b hold
for any multiplayer game with finitely many pure strategies under
the replicator equation (Eq. 1). Bukowski and Miekisz (32) (see
also ref. 8) characterize an ESS in terms of uninvadability [i.e.,
local superiority as in Theorem 2a]. Then, for three-player
games, p* is an ESS if and only if, for all p≠ p*,

i) πðp; p*; p*Þ≤ πðpp; p*; p*Þ (NE condition),
ii) if πðp; p*; p*Þ= πðp*; p*; p*Þ, then πðp; p*; pÞ≤ πðp*; p*; pÞ,
iii) if πðp; p*; p*Þ= πðp*; p*; p*Þ and πðp; p*; pÞ= πðp*; p*; pÞ, then

πðp; p; pÞ< πðp*; p; pÞ,
where πðp; q; rÞ≡Pm

j;k=1 piqjrkπðei; ej; ekÞ. That is, an ESS satisfies
the NE condition i as well as two stability conditions ii and iii.
Bukowski and Miekisz (32) go on to classify the ESS structure

of all three-player two-strategy games, showing in particular that
an interior ESS need not be globally asymptotically stable (com-
pare with Theorem 2c ). In fact, they also provide an example of a
four-player two-strategy supersymmetric game [i.e., πðei; ej; ek; eℓÞ
is the same for all permutations of the fixed indices i; j; k; ℓ∈
f1; 2g] that has two interior ESSs. Furthermore, for all two-
strategy multiplayer games, p* is locally asymptotically stable if
and only if p* is an ESS.
The above discussion assumes that the multiplayer game has

finitely many pure strategies. In the following example, this is no
longer the case.

Example 3 (Public Goods Game): The public goods game (PGG)
is a multiplayer game where each player is given an initial endow-
ment E> 0 and then decides how much x of this endowment to
contribute to a common pool (i.e., 0≤ x≤E). All contributions to the
common pool are multiplied by a factor r> 1 and then evenly dis-
tributed among all n players. A player’s payoff is then the remainder
of his endowment E− x plus what he receives from the public pool. If
he contributes x1 and the other n− 1 players contribute x2; x3; . . . ; xn,
respectively, his payoff πðx1; x2; x3; . . . ; xnÞ is given as

E− x1 +
r
n

Xn
i=1

xi =E+
�r
n
− 1

�
x1 +

r
n

Xn
i=2

xi: [7]

It is assumed that 1< r< n and so each player receives only part
of his own contribution to the common pool (i.e., r=n< 1).
The only NE is for each player to contribute 0 (i.e., to free-

ride) since πð0; x2; x3; . . . ; xnÞ> πðx1; x2; x3; . . . ; xnÞ for all x1 > 0.
On the other hand, each player receives his maximum possible
payoff of rE when all players contribute E. PPG is the multi-
player version of the prisoner’s dilemma (PD) game (33) with
free-riding (respectively, contributing E) corresponding to defect
(respectively, cooperate). PGG and PD have been used as the
standard examples of social dilemmas to investigate the evolu-
tion of cooperation in human and other societies (33, 34), both
from a theoretical and empirical perspective.
Since PGG has a continuous strategy space, the Folk Theorem

may no longer apply (as we saw above). It is therefore im-
portant to analyze stability under game dynamics such as the
replicator equation and adaptive dynamics. From [7], the ex-
pected payoff πðy;PÞ of an individual playing y in a group whose
other n− 1 players are chosen at random from a population with
state P∈Δð½0;E�Þ is E+ ½ðr=nÞ− 1�y+ ½rðn− 1Þ=n�x, where
x≡

R
½0;E�xPðdxÞ is the average contribution of an individual in

the population (SI Appendix, section 1.3). Furthermore, the
population mean payoff is πðP;PÞ≡ R

½0;E�πðy;PÞPðdyÞ=E+
½ðr=nÞ− 1�x+ ½rðn− 1Þ=n�x=E+ ðr− 1Þx.
Following Cressman et al. (35), the evolution of x under the rep-

licator equation (Eq. 6) is dx=dt= ½ðr=nÞ− 1�R½0;E�ðx− xÞ2PðdxÞ≤ 0

with equality if and only if P is a distribution δx that has all its weight
on some x∈ ½0;E�. Since Pt has the same support as P0 for all t≥ 0, x
evolves to the smallest element x* in the support of P0. In particular,
if there are some free-riders in the original population distribution, Pt
evolves to δ0 in the weak topology. This result also follows from the
fact that πð0;PÞ> πðP;PÞ if P≠ δ0 [i.e., 0 is (globally) neighborhood
superior in PGG].
The corresponding adaptive dynamics is dx=dt= ½dπðy; δxÞ=

dy�jy=x = ðr=nÞ− 1< 0 for x in the interior of ½0;E� and so x evolves
to 0 for this game dynamics as well. That is, neither game dynamics
predicts cooperative behavior will emerge in the PGG social
dilemma.

Asymmetric Games
An asymmetric game is a multiplayer game where the players are
assigned roles with a certain probability and, to each role, there
is a set of strategies. If there is only one role, then we have a
symmetric game. Here we concentrate on two-player two-role
asymmetric games with finite pure strategy sets fe1; e2; . . . ; emg
and ff1; f2; . . . ; fng respectively. These are also called “two-species
games” (roles correspond to species) with intraspecific (respec-
tively, interspecific) interactions among players in the same role
(respectively, different roles). We also assume that the expected
payoffs π1ðei; p; qÞ and π2ðfj; p; qÞ to ei in species 1 and to fj in
species 2 are linear in the components of the population states
p∈Δm and q∈Δn. One interpretation of linearity is that each
player engages in one intraspecific and one interspecific random
pairwise interaction per unit time.
The corresponding replicator equation on the ðm− 1Þ+ ðn− 1Þ

dimensional strategy space Δm ×Δn is then

_pi = piðπ1ðei; p; qÞ− π1ðp; p; qÞÞ  for  i= 1; . . . ;m
_qj = qj

�
π2
�
fj; p; q

�
− π2ðq; p; qÞ

�
 for  j= 1; . . . ; n; [8]

where, for example, π1ðp; p; qÞ≡
Pm

i=1piπ1ðei; p; qÞ is the mean
payoff of species 1. The Folk Theorem is valid under [8], where
a NE is a strategy pair ðp*; q*Þ such that π1ðp; p*; q*Þ≤
π1ðp*; p*; q*Þ for all p≠ p* and π2ðq; p*; q*Þ≤ π2ðq*; p*; q*Þ for
all q≠ q* (it is strict if both inequalities are strict).
To generalize Theorem 2, consider the uninvadability approach

of Maynard Smith and Price (3) for the resident–mutant system,
where residents and mutants use strategy pairs ðp*; q*Þ and ðp0; q0Þ,
respectively. ðp*; q*Þ is called a “two-species ESS” (36) if it is
locally asymptotically stable under the corresponding 2D (mixed-
strategy) replicator equation for all ðp0; q0Þ≠ ðp*; q*Þ. The
following result (9, 12, 20) corresponds to Theorem 2.

Theorem 4.

a) ðp*; q*Þ is a two-species ESS if and only if

either  π1ðp*; p; qÞ> π1ðp; p; qÞ
or  π2ðq*; p; qÞ> π2ðq; p; qÞ [9]

for all strategy pairs ðp; qÞ that are sufficiently close (but not equal)
to ðp*; q*Þ.
b) A two-species ESS ðp*; q*Þ is a locally asymptotically stable rest

point of the replicator equation (Eq. 8).
c) A two-species ESS ðp*; q*Þ in the interior of Δm ×Δn is a globally

asymptotically stable rest point of the replicator equation.

Condition 9 for ðp*; q*Þ is thus the logical extension to two-
species games of local superiority. It has been further extended
to asymmetric games having continuous strategy spaces where it
is called “neighborhood superior” (19) when applied to pure
strategy pairs ðx*; y*Þ and distributions ðP;QÞ with nearby sup-
port. A neighborhood superior ðx*; y*Þ is then stable under the
measure-theoretic replicator equation that extends [6] to two-
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species systems. A related condition (called “neighborhood half-
superior”) corresponds to the CSS concept and stability under
adaptive dynamics (19, 31).
The theory with finitely many pure strategies has also been

extended to two-species population games with nonlinear payoffs
(10). For the habitat selection game with two competitive spe-
cies, individual fitness decreases as the density of either species
in its patch increases. Krivan et al. (22) show that the IFD [de-
fined as a distribution where the fitness of species 1 in all patches
occupied by this species are equal and at least as high as in any
patch unoccupied by this species (and the same for species 2)] is
not always stable unless it is also a two-species ESS. This result
brings into question how the single-species IFD of Fretwell and
Lucas (21) should be defined for two (or more) species.
Asymmetric games with no intraspecific interactions (i.e., the

probability individuals in the same role interact is 0) were con-
sidered early on by Selten (37) who called them “truly asym-
metric games.” With two players, two roles and our linearity
assumption on expected payoffs, these become bimatrix games be-
cause π1ðei; p; qÞ= π1ðei; qÞ≡

Pn
ℓ=1Aiℓqℓ and π2ðfj; p; qÞ= π2ðfj; pÞ≡Pm

k=1Bkjpk, where, for example, A is the m× n matrix with entries
Aij = π1ðei; fjÞ.
It is well known (12) that ðp*; q*Þ is a locally asymptotically

stable rest point of the bimatrix replicator equation (Eq. 8) if and
only if it is a strict NE (SI Appendix, section 2). Moreover (38),
ðp*; q*Þ is a strict NE if and only if it is a two-species ESS [e.g., if
ðp; qÞ= ðp; q*Þ, then [9] implies π1ðp*; q*Þ> π1ðp; q*Þ for p≠ p*].
Unfortunately, many bimatrix games have no strict NE and so
game dynamics may not predict a NE outcome for them. How-
ever, more can be said when these bimatrix normal form games
come from a corresponding extensive form (e.g., Theorem 5 in
the following section).

Asymmetric Extensive Form Games. Extensive form games whose
decision trees describe finite series of interactions between the
same two players (with the set of actions available at later inter-
actions possibly depending on what choices were made previously)
were introduced alongside normal form games by von Neumann
and Morgenstern (39). From an evolutionary game perspective,
differences with normal form intuition already emerge for games
of perfect information (SI Appendix, section 2.1) with short de-
cision trees as illustrated in this section (see also ref. 13).
Consider the elementary perfect information game of Fig. 3A

that goes by several names [e.g., the “chain store game” (38), the
“entry deterrence game” (17)]. Player 1 has one decision node u
where he chooses between the actions L and R. If he takes action
L, player 1 gets payoff 1 and player 2 gets 4. If he takes action R,
then we reach the decision node v of player 2 who then chooses
between ℓ and r leading to both players receiving payoff 0 or both
payoff 2, respectively.

The corresponding bimatrix normal form [e.g., 1 and 4 are the
payoffs to players 1 and 2, respectively when they play ðL; ℓÞ]

L
R

�
1; 4 1; 4
0; 0 2; 2

�ℓ  r

has two NE outcomes. One is the two-species ESS and strict NE
pair ðR; rÞ. On the other hand, if player 1 chooses L, then player 2
is indifferent to what strategy he uses since his payoff is always 4.
Furthermore, player 1 is no better off by playing R with positive
probability if and only if player 2 plays ℓ at least half the time. Thus,

G≡
	


L; q1ℓ+ ð1− q1Þr
����� 12≤ q1 ≤ 1

�

is a set of NE (called a “NE component” since it is a connected
set of NE that is not contained in any larger connected set of
NE) all corresponding to the same NE outcome; namely, the
path L that leads to payoffs 1 and 4.
The trajectories of the replicator equation (Eq. 8) are shown

in Fig. 3B. All points on the vertical edge p1 = 1 (p1 is the
probability player 1 plays L) are rest points although only those in
G are limit points of interior trajectories. The six results below
for this example follow since q1 is always strictly decreasing and p1
is strictly increasing (decreasing) if and only if q1 > 1=2
ðq1 < 1=2Þ for any interior trajectory. They hold in general by
Theorem 5 (13).

1) Every NE outcome is a single terminal node.
2) Every NE component G includes a pure strategy pair.
3) The outcomes of all elements of G are the same.
4) Every interior trajectory converges to a NE.
5) If a NE component is interior attracting, it includes the sub-

game perfect NE (SPNE) defined below.
6) A NE is locally asymptotically stable if and only if it is a strict

SPNE if and only if it is pervasive (i.e., it reaches every player
decision point).

Theorem 5. These six results are true for all generic perfect in-
formation games without moves by nature.

Some game theorists argue that these games have only one
rational NE equilibrium outcome and this can be found by
backward induction. This procedure starts at a final player de-
cision node (i.e., a player decision node that has no player de-
cision points following it) and decides which unique action this
player chooses there to maximize his payoff in the subgame with
this as its root. The original game tree is then truncated at this
node by creating a terminal node there with payoffs to the two
players given by this action. The process yields the SPNE when it
is continued until the game tree has no player decision nodes left.
That is, the strategy constructed by backward induction pro-
duces a NE in each subgame Γu corresponding to the subtree
with root at the decision node u. This is a pure strategy pair
and is indicated by the double lines in the decision tree as in Fig.
3A. If a NE is not subgame perfect, then this perspective argues
that there is some player decision node where an incredible threat
has been used such as player 2 forcing payoff 0 by playing ℓ if node v
is reached (38).
Results 5 and 6 support this argument although, as the deci-

sions tree becomes more complex than Fig. 3A, the SPNE (com-
ponent) need no longer be stable (13). Instability of the SPNE
often arises when a player has two (or more) decision nodes
along a path in the tree or when the game does not have perfect
information as in the following example.

Example 4 (The Prey Recognition Game): Two prey types are
distributed among a large number of patches (or microhabitats)

Fig. 3. The extensive form (A) of the chain store game and trajectories (B)
of the replicator equation (Eq. 8).
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with at most one prey in each patch. Let pi be the probability a
patch chosen at random by a single predator contains prey of
type i for i= 1; 2 and p0 the probability the patch is empty (i.e.,
contains no prey) (Fig. 4, level 1). If the predator finds a prey
while spending searching time τs in the chosen patch, it decides
immediately whether to attack, move to another microhabitat
to begin a new search, or spend recognition time to determine
the type of prey encountered with probabilities qA; qM ; qR respec-
tively [i.e., q≡ ðqA; qM ; qRÞ∈Δ3]. The horizontal dashed line in
Fig. 4 joining these two encounter events (called an “information
set”) indicates that this decision must be made without knowing
the type of prey.
If the predator decides to spend recognition time τr to de-

termine the encountered prey is of type i, then it must sub-
sequently decide whether to attack this prey or not with
probabilities qAi and 1− qAi respectively (Fig. 4, level 3). If τih
is the handling time for prey of type i and πi is their nutritional
value, then the total predator nutritional value per unit time
f ððqA; qR; qMÞ; qA1; qA2Þ is

p1π1ðqA + qRqA1Þ+ p2π2ðqA + qRqA2Þ
τ

; [10]

where τ=τs+ p1qAτ1h+p1qRðqA1τ1h+τrÞ+p2qAτ2h +p2qRðqA2τ2h +
τrÞ (SI Appendix, section 2.2).
Optimal foraging theory (40) postulates the predator maximizes

f as a function of q; qA1; qA2. Game-theoretic methods can be used
to find the optimal foraging behavior (41). Specifically, the agent
normal form of Fig. 4 is a three-player foraging game where player
1 chooses q∈Δ3 at the information set, player 2 chooses qA2 at the
node labeled “recognized prey 2” and player 3 chooses qA1 at
“recognized prey 1.” Optimal foraging behavior is a NE of
this game.
At a NE, the predator should never move to another patch

when it first finds a prey since, by abandoning this prey, the
predator wastes the time spent searching for it. Furthermore, if
prey type 1 is more profitable than type 2 (i.e., π1=τ1h > π2=τ2h
as assumed throughout this example), then the predator must
attack any prey 1 that it recognizes (SI Appendix, section 2.2).
Thus, we assume that qM = 0 and qA1 = 1 in the decision tree of
Fig. 4 and analyze the truncated foraging game that eliminates
the three edges indicated by dotted lines there.
Following Cressman et al. (41), if the profitabilities of both

prey types are nearly equal or recognition time is long, the

only NE behavior of player 1 is to immediately attack any
prey encountered. In fact, the only NE component is then
G≡ fðq; qA2ÞjqA = 1; 0≤ qA2 ≤ 1g.
Otherwise, a subset ofG (see the red line segment in SI Appendix,

Fig. S2) is a NE component and another NE outcome emerges
where the predator spends the time to recognize the type of prey
it encountered and then only attacks the most profitable type
(i.e., qA = 0 and qA2 = 0 is a NE). This latter NE is strict and is the
only one that corresponds to optimal foraging behavior. It is also
the only NE outcome that is locally asymptotically stable under
the adaptive dynamics (SI Appendix, section 2.2 and Fig. S2)

_qA = qAð1− qAÞ ∂
∂qA

f ðqA; qA2Þ

_qB = qA2ð1− qA2Þ ∂
∂qA2

f ðqA; qA2Þ
[11]

that keeps the unit square invariant.
Although the prey recognition game is not a conventional ex-

tensive form game because payoffs are nonlinear in the predator’s
strategy (and the game has a continuous strategy space), the game
dynamics 11 is remarkably similar to that of the replicator equa-
tion for the chain store game (Fig. 3B and SI Appendix, Fig. S2).

Discussion
The replicator equation and other deterministic game dynamics
have become essential tools over the past 40 years in applying
evolutionary game theory to behavioral models in the biological
and social sciences. The theory that we have summarized for
these dynamics assumes large homogeneous populations with
random interactions. Stochastic effects (e.g., based on finite
populations) and the effects of nonrandom interactions (e.g.,
games on graphs), which have become increasingly important in
game dynamic models (10, 11), are beyond the scope of this paper.
The examples given in this paper show that static game-

theoretic solution concepts (e.g., NE and ESS) play a central
role in predicting the evolutionary outcome of game dynamics.
Conversely, game dynamics that arise naturally in analyzing
behavioral evolution lead to a more thorough understanding of
issues connected to the static concepts. That is, both the classical
and evolutionary approaches to game theory benefit through this
interplay between them.
For instance, the prey recognition game illustrates anew the

potential of game-theoretic methods to gain a better understand-
ing of issues that arise in behavioral ecology. Here, it suggests how
the predator “learns” its optimal foraging behavior through game
dynamics, a question that is not often considered in optimal for-
aging theory. On the other hand, the analysis of this game also
raises important questions in game-theoretic applications to hu-
man behavior. Specifically, this example considers the effect time
spent on different interactions has on rational behavior, an aspect
that becomes increasingly central when individuals have a series of
interactions such as those modeled by an extensive form.
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