
center of the oocytes instead, suggesting that the spindle
migration process is dependent on active microtubule assem-
bly during mouse oocyte meiosis. Based on the observation
that spindles of most eggs remained parallel to the plasma
membrane after a low dose of nocodazole treatment, we
inferred that active microtubule assembly is also involved in
spindle rotation.

In mouse oocytes, microtubules were found to exist in
two forms: either linked to DNA or located in the cytoplasm
~Maro et al., 1985!. Although the configuration of spindles
was seemingly normal compared to the ones in oocytes
treated with high doses of nocodazole, we do not know
exactly how the low dosage of nocodazole affected these
two populations of microtubules. There are two possibili-
ties: ~1! The concentration of nocodazole we used in this
work only affected the cytoplasmic microtubule organiza-
tion but not the spindle microtubule organization. If this is
true, we can conclude that cytoplasmic microtubules may
be required for spindle migration. ~2! Low dose nocodazole
might destroy not only the cytoplasmic microtubule organi-

zation but also spindle microtubules to some extent. In this
case, cytoplasmic microtubules and integrated spindle mi-
crotubules are both required for spindle migration. Micro-
filaments and microtubules have functional links through
interaction or cooperation ~Yarm et al., 2001!; so we specu-
late that microfilaments may exert effects on spindle migra-
tion by interacting or cooperating with microtubules in the
cytoplasm, or both cytoplasm and spindle. At the same
time, formins that are found to be required for spindle
migration ~Leader et al., 2002; Dumont et al., 2007! also act
as linking proteins between microfilaments and micro-
tubules in budding yeast ~Yarm et al., 2001!, so presumably
they function by mediating interaction or cooperation be-
tween microtubules and microfilaments and thus are re-
quired for spindle movement in mouse oocytes. Once
microtubules in the oocytes are completely destroyed, mi-
crofilaments could attach to DNA directly and guide the
migration to the cortex. This hypothesis may explain why
DNA could still migrate normally when spindle micro-
tubules were completely destroyed. It is worth noting that

Figure 5. Regulation of Ca2�/CaM/CaMKII on spindle rotation and PB2 extrusion. A: Effect of membrane permeable
calcium chelator BAPTA-AM, calmodulin antagonist W7, and CaMKII inhibitor KN-93 on PB2 emission of mouse
oocytes. B: Different populations of oocytes with unrotated, partially rotated, and completely rotated spindle,
respectively, after different treatments 2 h postactivation. Different superscripts indicate statistical difference ~P , 0.05!.

Figure 6. Morphology of spindle ~green! and chromosomes ~red! after different treatments. Eggs were evaluated 2 h
postactivation. A–C represents oocytes treated with 15 mM BAPTA-AM, 15 mM W7, and 20 mM KN93, respectively.
Bar � 20 mm.
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metaphase-anaphase transition was inhibited in both of the
two meiotic divisions, suggesting that spindle checkpoint
has been activated by the weak-impaired spindle after a low
dose of nocodazole treatment. Whether metaphase-anaphase
transition associates with spindle migration/rotation needs
to be further determined.

In addition, our results of sequential spindle imaging
after oocyte activation were consistent with a previous re-
port ~Ibanez et al., 2005!. Also, detailed kinetics of spindle
rotation at different time points after strontium activation
as revealed by us would be of important support for previ-
ously reported work, in which kinetics of spindle rotation in
different genetic background oocytes after strontium activa-
tion was described ~Ibanez et al., 2005!.

Roles of Calcium/Calmodulin/CaMKII in Spindle
Rotation during Oocyte Meiosis

Ca2� oscillations stimulated by fertilization or artificial
activation initiate a series of subcellular and biochemical
changes in oocytes, including cortical granule exocytosis,
resumption of meiosis, PB2 extrusion, pronuclear forma-
tion, and first mitotic cleavage ~Ducibella et al., 2002;
Kline & Kline, 1992; Swann & Ozil, 1994; Schultz & Kopf,
1995!.

Studies by us and others have shown that function of
Ca2� is mediated by CaM and CaMKII during the first
meiotic maturation in mouse and pig oocytes ~Su & Eppig,
2002; Fan et al., 2003!. It was also shown that Ca2�/CaM-
dependent protein kinase II ~CaMKII! appears to regulate
several events of egg activation ~Winston & Maro, 1995;
Johnson et al., 1998; Abbott et al., 1999; Tatone et al., 1999,
2002; Fan et al., 2003; Markoulaki et al., 2003, 2004!.

But for now, there is no direct evidence that this calcium/
CaM/CaMKII pathway is involved in spindle rotation. The
findings that MYLK2 and myosin II, two CaM-dependent
proteins, could transduce the Ca2� signal at fertilization and
were involved in spindle rotation in mouse oocytes ~Matson
et al., 2006! allow for this possibility. In the present work, we
found that all three inhibitors against calcium, CaM, and
CaMKII, respectively, could prevent PB2 emission ~Fig. 5A!
by disturbing spindle rotation. These results imply the impor-
tant roles of this cascade in spindle rotation. It is interesting
that the calcium chelator BAPTA-AM impaired spindle
configuration: half of the spindle closer to the plasma
membrane was seemingly normal while the other half was
destroyed ~Fig. 6A!. CaM inhibitor W7 also impaired the
apparent spindle configuration ~Fig. 6B! while application
of the CaMKII inhibitor KN93 did not impair spindle con-
figuration noticeably ~Fig. 6C!. These findings are consistent
with the report that the process of microtubule depolymer-
ization appears to be regulated by the calcium-calmodulin
complex ~Cheung, 1980; Klee et al., 1980!. So we inferred
that inhibition of the calcium pathway could destroy spindle
microtubules and thereafter inhibit spindle rotation. This
conclusion needs to be further clarified.

In conclusion, active microtubule assembly is required
for both spindle migration and spindle rotation. Calcium-
CaM-CaMKII pathway is required for spindle rotation. The
possible network of these pathways in regulating spindle
movement in mouse oocyte needs to be further clarified.
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